科技信息快递

2018年

  1. 2020年
  2. 2019年
  3. 2018年
  4. 2017年
  5. 2016年
  6. 2015年
  7. 2014年

第九期

  1. 第一期
  2. 第二期
  3. 第三期
  4. 第四期
  5. 第五期
  6. 第六期
  7. 第七期
  8. 第八期
  9. 第九期
  10. 第十期
  11. 第十一期
  12. 第十二期

参考文献

首页 > 《科技信息快递》 >2018年>第九期>参考文献
参考文献 发布日期 :2020-06-16  
  本报告主要依据的研究论文和出版物, 对世界上主要气象业务中心预报模式特征和同化系统能力等方面进行了分析, 所列文献中的重点国外文献全文, 在附录中给出。
贾朋群,李婧华(2015): 2010 年以来世界主要国家气象发展战略和规划,科技信息快递, 2015 年 9 期
贾朋群(2016): ECMWF 未来 10 年“2+4+1”战略:将天气气候预报引向极致,气象科技进展,6(4):29
贾朋群(2018):“他乡”或许不再是“异乡” ——ECMWF“揭开灰色地带的谜底”学术会评介,气象科技进展,8(1):299-302,304
贾朋群 田晓阳(2018): 2010 年以来世界主要气象中心业务模式性能量化评估指标分析,科技信息快递,2018年3期
颉卫华(2017):赴欧中中期天气预报中心访学工作总结,气象科技合作动态, 2017年4期
许小峰(2018):从物理模型到智能分析——降低天气预报不确定性的新探索,气象,44(3):341-350
张定媛(2018): 热带气旋预报水平及指标分析. 科技信息快递, 2018年4期
郑秋红等译,贾朋群校(2015): Nature 封面评述文章译介: NWP 革命静悄悄,科技信息快递, 2015年10期
周庆亮(2018): 世界气象中心设置、认定与履职简析. 气象科技进展, 8(4): 129-131
Akio Yamagami, Mio Matsueda, Hiroshi L. Tanaka. (2018). Medium-Range Forecast Skill for Extraordinary Arctic Cyclones in Summer of 2008–2016. Geophysical Research Letters
Baker, L. H., Shaffrey, L. C., Sutton, R. T., Weisheimer, A., & Scaife, A. A. (2018). An intercomparison of skill and over/underconfidence of the wintertime North Atlantic Oscillation in multi‐ model seasonal forecasts. Geophysical Research Letters.
Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., & Foujols, M. A. (2017). CPMIP:measurements of real computational performance of Earth system models in CMIP6, Geosci. Model Dev., 10, 19–34.
Bauer, P., Alan Thorpe, Gilbert Brunet(2015): The quiet revolution of numerical weather prediction, Nature, 525, P47-55 Bauer, P., Auligné, T., Bell, W., Geer, A., Guidard, V., Heilliette, S., Kazumori, M., Kim, M., Liu, E., McNally, A., Macpherson,
B., Okamoto, K., Renshaw, R. and Riishøjgaard, L. (2011). Satellite cloud and precipitation assimilation at operational NWP centres. Quarterly Journal of the Royal Meteorological Society, 137(661), pp.1934-1951.
Bauer, P., Brown, A., Buizza, R. and Rabier, F. (2018). ECMWF 2016-2025 strategy: moving towards seamless ensembles. Becker Emily and Huug van den Dool. (2018) Short-term climate extremes: probabilistic forecasts from a multi-model ensemble, Metrics, Post-processing, and Products for S2S Workshop, 28 Feb. – 2 Mar. 2018
Bonan, G. and Doney, S. (2018). Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 359(6375), p.eaam8328.
Bouyssel, F. 2015. Météo-France report. WGNE-30, 23-26 March 2015. http://polar.ncep.noaa.gov/conferences/WGNE-30/pdfs/day2/06-Met-France_report.pdf
Buizza, R, Martin Leutbecher and Martin Janousek(2017): The Forecast Skill Horizon CMC. (2017): The Global Deterministic Prediction System (GDPS) version 6.0.0 of the Meteorological Service (MSC) of Canada.
CNRM 2018. ARPEGE http://www.umr-cnrm.fr/spip.php?article121 
David John Gagne II, et al. (2015) Day-Ahead Hail Prediction Integrating Machine Learning with Storm-Scale Numerical Weather Models. Proceedings of the Twenty-Seventh Conference on Innovative Applications of Artificial Intelligence DeWitt, D. (2018). CPC Current Capabilities and Metrics (Part I) and Key Science Challenges to Improving S2S Forecast Skill (Part II).
Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Eade, R., Robinson, N., Andrews, M. and Knight, J. (2016). Skilful
predictions of the winter North Atlantic Oscillation one year ahead. Nature Geoscience, 9(11), pp.809-814.
DWD. 2018. The actual operational numerical weather prediction and emergency response system. https://www.dwd.de/EN/research/weatherforecasting/num_modelling/06_nwp_emergency_response_system/num_weather_prediction_emergency_system.html?nn=480860
ECMWF. (2016): ECMWF Annual Report 2017, ECMWF 网页
ECMWF. (2018a): Annual Report 2017, ECMWF 网页
ECMWF (2018b). Operational configurations of the ECMWF Integrated Forecasting System (IFS) https://www.ecmwf.int/en/forecasts/documentation-and-support
Eyring et al. (2016a): Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Eyring, V., Gleckler, et al. (2016b): Towards improved and more routine Earth system model evaluation in CMIP. Earth Syst.Dynam., 7(4): 813-830.
Eyring, V., et al. (2015): ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geosci. Model Dev., 9(5): 1747-1802.
Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring, C. Forest, P.Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason and M. Rummukainen. (2013): Evaluation of Climate Models. In:
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung,A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and NewYork, NY, USA.
Forster, P. (2017): In Retrospect: Half a century of robust climate models. Nature, 545(7654), pp.296-297.
Geer, A., Lonitz, K., Weston, P., Kazumori, M., Okamoto, K., Zhu, Y., Liu, E., Collard, A., Bell, W., Migliorini, S., Chambon, P.,Fourrié, N., Kim, M., Köpken-Watts, C. and Schraff, C. (2017): All-sky satellite data assimilation at operational weather forecasting centres. Quarterly Journal of the Royal Meteorological Society.
Gleckler, P., Doutriaux, C., Durack, P., Taylor, K., Zhang, Y., Williams, D., Mason, E. and Servonnat, J. (2016): A More Powerful Reality Test for Climate Models. Eos, 97.
Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., Weissman, M., Reich, H., Brousseau, P., Montmerle, T., Wattrelot, E.,Bučánek, A., Mile, M., Hamdi, R., Lindskog, M., Barkmeijer, J., Dahlbom, M., Macpherson, B., Ballard, S., Inverarity, G.,Carley, J., Alexander, C., Dowell, D., Liu, S., Ikuta, Y. and Fujita, T. (2017): Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quarterly Journal of the Royal Meteorological Society.
Haarsma, R., Roberts, M., Vidale, P., Senior, C., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L., Lu, J., Luo, J., Mao, J., Mizielinski, M., Mizuta, R.,
Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J. and von Storch, J. (2016): High Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development Discussions, pp.1-35.
Huang Ling and Luo Yali. (2017): Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season. Journal of Geophysical Research: Atmospheres Lord, S. (2004): The Future of NWP.
JMA.(2018): Numerical Weather Prediction Models and related Application. http://www.jma.go.jp/jma/en/Activities/nwp.html Manabe, S. & Wetherald, R. T (1967): Thermal Equilibrium of the Atmosphere With a Given Distribution of Relative Humidity,J. Atmos. Sci. 24(3), 241–259
Mengaldo Gianmarco, Andrzej Wyszogrodzki, Michail Diamantakis, Sarah-Jane Lock, Francis X. Giraldo, Nils P. Wedi. (2018):Current and Emerging Time-Integration Strategies in Global Numerical Weather and Climate Prediction. Archives of Computational Methods in Engineering NCEP (2018): Global Forecast System (GFS). https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
Phillips, A.S., Deser, C. and Fasullo, J. (2014): Evaluating Modes of Variability in Climate Models. Eos Trans. AGU, 95(49):453-455.
Ramaswamy V. (2018): Weather-to-Decadal Timescales: Enhancing Modeling for Predictions, Metrics, Post-processing, and Products for S2S Workshop, 28 Feb. – 2 Mar. 2018
Russell Joellen, Igor Kamenkovich, Cecilia Bitz, et al. (2017): Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models. Journal of Geophysical Research: Oceans Scaife, A. (2018). Skilful Long Range Forecasts for Europe.
Tolman(2017): NOAA Modeling Forum, Prediction Suites in 2018, AGU Fall Meeting Tompkins, A. M., Ortiz De Zárate, M. I., Saurral, R. I., Vera, C., Saulo, C., Merryfield, W. J. & Butler, A. (2017). The Climate-System Historical Forecast Project: Providing Open Access to Seasonal Forecast Ensembles from Centers around the Globe. Bulletin of the American Meteorological Society, 98(11), 2293-2301.
UK Met Office . (2017): Met Office Numerical Weather Preidction models. https://www.metoffice.gov.uk/research/modelling-systems/unified-model/weather-forecasting USHIYAMA Tomoki, Takahiro SAYAMA, Yoichi IWAMI. (2017): The Present State of Flash Flood Forecasting Utilizing Numerical Weather Prediction in Europe Vitart, Frédéric. (2014): Evolution of ECMWF sub ‐ seasonal forecast skill scores. Quarterly Journal of the Royal Meteorological Society 140, no. 683: 1889-1899.
Vitart, F. and Robertson, A. (2018). The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events.npj Climate and Atmospheric Science, 1(1).
WMO (2015): Seamless Prediction of the Earth System: from Minutes to Month, WMO-No. 1156 WMO (2018). WWRP/WCRP Sub-seasonal to Seasonal Prediction Project (S2S) Phase I Final Report. WWRP 2018 - 2. World Meteorological Organization.
Yamaguchi, M., J. Ishida, H. Sato, and M. Nakagawa. (2017): WGNE Intercomparison of Tropical Cyclone Forecasts by Operational NWP Models: A Quarter Century and Beyond. Bull. Amer. Meteor. Soc., 98, 2337–2349.
Zhu Yuejian(2018): Potential Operational Capability for S2S Prediction, Metrics, Post-processing, and Products for S2S Workshop, 28 Feb. – 2 Mar. 2018.